15 research outputs found

    QuantumInformation.jl---a Julia package for numerical computation in quantum information theory

    Full text link
    Numerical investigations are an important research tool in quantum information theory. There already exists a wide range of computational tools for quantum information theory implemented in various programming languages. However, there is little effort in implementing this kind of tools in the Julia language. Julia is a modern programming language designed for numerical computation with excellent support for vector and matrix algebra, extended type system that allows for implementation of elegant application interfaces and support for parallel and distributed computing. QuantumInformation.jl is a new quantum information theory library implemented in Julia that provides functions for creating and analyzing quantum states, and for creating quantum operations in various representations. An additional feature of the library is a collection of functions for sampling random quantum states and operations such as unitary operations and generic quantum channels.Comment: 32 pages, 8 figure

    A model for quantum queue

    Full text link
    We consider an extension of Discrete Time Markov Chain queueing model to the quantum domain by use of Discrete Time Quantum Markov Chain. We introduce methods for numerical analysis of such models. Using this tools we show that quantum model behaves fundamentally differently from the classical one.Comment: 14 pages, 7 figure

    Conditional entropic uncertainty relations for Tsallis entropies

    Get PDF
    The entropic uncertainty relations are a very active field of scientific inquiry. Their applications include quantum cryptography and studies of quantum phenomena such as correlations and non-locality. In this work we find entanglement-dependent entropic uncertainty relations in terms of the Tsallis entropies for states with a fixed amount of entanglement. Our main result is stated as Theorem~\ref{th:bound}. Taking the special case of von Neumann entropy and utilizing the concavity of conditional von Neumann entropies, we extend our result to mixed states. Finally we provide a lower bound on the amount of extractable key in a quantum cryptographic scenario.Comment: 11 pages, 4 figure

    Decoherence effects in the quantum qubit flip game using Markovian approximation

    Full text link
    We are considering a quantum version of the penny flip game, whose implementation is influenced by the environment that causes decoherence of the system. In order to model the decoherence we assume Markovian approximation of open quantum system dynamics. We focus our attention on the phase damping, amplitude damping and amplitude raising channels. Our results show that the Pauli strategy is no longer a Nash equilibrium under decoherence. We attempt to optimize the players' control pulses in the aforementioned setup to allow them to achieve higher probability of winning the game compared to the Pauli strategy.Comment: 19 pages, 7 figure

    Quantum Hidden Markov Models based on Transition Operation Matrices

    Full text link
    In this work, we extend the idea of Quantum Markov chains [S. Gudder. Quantum Markov chains. J. Math. Phys., 49(7), 2008] in order to propose Quantum Hidden Markov Models (QHMMs). For that, we use the notions of Transition Operation Matrices (TOM) and Vector States, which are an extension of classical stochastic matrices and probability distributions. Our main result is the Mealy QHMM formulation and proofs of algorithms needed for application of this model: Forward for general case and Vitterbi for a restricted class of QHMMs.Comment: 19 pages, 2 figure

    Non-stationary departure process in a batch-arrival queue with finite buffer capacity and threshold-type control mechanism

    Get PDF
    summary:Non-stationary behavior of departure process in a finite-buffer MX/G/1/KM^{X}/G/1/K-type queueing model with batch arrivals, in which a threshold-type waking up NN-policy is implemented, is studied. According to this policy, after each idle time a new busy period is being started with the NNth message occurrence, where the threshold value NN is fixed. Using the analytical approach based on the idea of an embedded Markov chain, integral equations, continuous total probability law, renewal theory and linear algebra, a compact-form representation for the mixed double transform (probability generating function of the Laplace transform) of the probability distribution of the number of messages completely served up to fixed time tt is obtained. The considered queueing system has potential applications in modeling nodes of wireless sensor networks (WSNs) with battery saving mechanism based on threshold-type waking up of the radio. An illustrating simulational and numerical study is attached

    Unconditional Security of a KK-State Quantum Key Distribution Protocol

    Get PDF
    Quantum key distribution protocols constitute an important part of quantum cryptography, where the security of sensitive information arises from the laws of physics. In this paper we introduce a new family of key distribution protocols and we compare its key with the well-known protocols such as BB84, PBC0 and generation rate to the well-known protocols such as BB84, PBC0 and R04. We also state the security analysis of these protocols based on the entanglement distillation and CSS codes techniques.Comment: 5 pages, 1 figur

    Analysis of Non-Steady Queue-Length Distribution in a Finite-Buffer Model with Group Arrivals and Power Saving Mechanism with Setups

    No full text
    In the manuscript, a probability distribution of the queue length is studied in a model with group Markov arrivals, arbitrarily distributed service times and finite waiting room. After the period of suspension of service due to lack of packets, each new busy period is preceded by a random setup time. Integral equations for time-dependent queue-length distribution are derived by identifying renewal moments in the operation of the system and by applying total probability law. The representation for the solution of the system is found in terms of Laplace transforms. Computational examples illustrating the impact of system parameters on the queue-length distribution are included

    On Transient Queue-Size Distribution in a Model of WSN Node with Threshold-Type Power-Saving Algorithm

    No full text
    This article proposes a queueing model of the operation of a wireless sensor network node, in which a threshold strategy for starting the node after a period of no transmission is used. In this model, transmission of packets is resumed when the number of packets in the accumulation buffer reaches a predefined level. In the literature, most of the results for models with limited access to the service station are obtained in equilibrium. In this paper, a formula for the Laplace transform of the transient queue-size distribution is obtained and written using the key input parameters of the system. The analytical apparatus uses the concept of the embedded Markov chain, the formula for total probability, renewal theory and some supporting algebraic results. Numerical examples are attached as well
    corecore